Kinetic Study of Hydrogen Evolution Reaction over Strained MoS2 with Sulfur Vacancies Using Scanning Electrochemical Microscopy.
نویسندگان
چکیده
Molybdenum disulfide (MoS2), with its active edge sites, is a proposed alternative to platinum for catalyzing the hydrogen evolution reaction (HER). Recently, the inert basal plane of MoS2 was successfully activated and optimized with excellent intrinsic HER activity by creating and further straining sulfur (S) vacancies. Nevertheless, little is known about the HER kinetics of those S vacancies and the additional effects from elastic tensile strain. Herein, scanning electrochemical microscopy was used to determine the HER kinetic data for both unstrained S vacancies (formal potential Ev0 = −0.53 VAg/AgCl, electron-transfer coefficient αv = 0.4, electron-transfer rate constant kv0 = 2.3 × 10(–4) cm/s) and strained S vacancies (Esv0= −0.53 VAg/AgCl, αsv = 0.4, ksv0 = 1.0 × 10(–3) cm/s) on the basal plane of MoS2 monolayers, and the strained S vacancy has an electron-transfer rate 4 times higher than that of the unstrained S vacancy. This study provides a general platform for measuring the kinetics of two-dimensional material-based catalysts.
منابع مشابه
Electrochemical generation of sulfur vacancies in the basal plane of MoS2 for hydrogen evolution
Recently, sulfur (S)-vacancies created on the basal plane of 2H-molybdenum disulfide (MoS2) using argon plasma exposure exhibited higher intrinsic activity for the electrochemical hydrogen evolution reaction than the edge sites and metallic 1T-phase of MoS2 catalysts. However, a more industrially viable alternative to the argon plasma desulfurization process is needed. In this work, we introduc...
متن کاملAtomic Structure and Dynamics of Single Platinum Atom Interactions with Monolayer MoS2.
We have studied atomic level interactions between single Pt atoms and the surface of monolayer MoS2 using aberration-corrected annular dark field scanning transmission electron microscopy at an accelerating voltage of 60 kV. Strong contrast from single Pt atoms on the atomically resolved monolayer MoS2 lattice enables their exact position to be determined with respect to the MoS2 lattice, revea...
متن کاملAll The Catalytic Active Sites of MoS2 for Hydrogen Evolution.
MoS2 presents a promising low-cost catalyst for the hydrogen evolution reaction (HER), but the understanding about its active sites has remained limited. Here we present an unambiguous study of the catalytic activities of all possible reaction sites of MoS2, including edge sites, sulfur vacancies, and grain boundaries. We demonstrate that, in addition to the well-known catalytically active edge...
متن کاملEffect of Polymer Addition on the Structure and Hydrogen Evolution Reaction Property of Nanoflower-Like Molybdenum Disulfide
Nano-structured molybdenum disulfide (MoS2) catalysts have been extensively developed for the hydrogen evolution reaction (HER). Herein, a novel hydrothermal intercalation approach is employed to fabricate nanoflower-like 2H–MoS2 with the incorporation of three polymers, polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA), and polyethylenimine (PEI). The as-prepared MoS2 specimens were characte...
متن کاملIdentification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts.
The identification of the active sites in heterogeneous catalysis requires a combination of surface sensitive methods and reactivity studies. We determined the active site for hydrogen evolution, a reaction catalyzed by precious metals, on nanoparticulate molybdenum disulfide (MoS2) by atomically resolving the surface of this catalyst before measuring electrochemical activity in solution. By pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 138 15 شماره
صفحات -
تاریخ انتشار 2016